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Abstract. The temperature-induced second-order phase transition from Bloch to linear (Ising-
like) domain walls in uniaxial ferromagnets is investigated for the model ofD-component
classical spin vectors in the limitD → ∞. This exactly solvable model is equivalent to
the standard spherical model in the homogeneous case, but deviates from it and is free from
unphysical behaviour in a general inhomogeneous situation. It is shown that the thermal
fluctuations of the transverse magnetization in the wall (the Bloch-wall order parameter) result
in the diminishing of the wall transition temperatureTB in comparison to its mean-field value,
thus favouring the existence of linear walls. For finite values ofTB an additional anisotropy
in the basis planex, y is required; in purely uniaxial ferromagnets a domain wall behaves like
a two-dimensional system with a continuous spin symmetry and does not order into the Bloch
one.

1. Introduction

The spherical model proposed in 1952 by Berlin and Kac [1] (see also [2, 3]) has been used
extensively up to now as the only exactly solvable model describing the phase transition
in three-dimensional magnetic systems. In contrast to the mean-field approximation (MFA),
the spherical model describes, in a simplified manner, the thermal fluctuations of spins,
which can be taken into account exactly due to their Gaussian nature. The technique
for the consideration ofinhomogeneoussystems described by the spherical model was
developed by Barber and Fisher [4] for surface-induced inhomogeneity in layered magnetics
and elaborated by Abraham and Robert [5] for the problem of phase separation (i.e. domain
wall (DW) formation) in the spherical model. Later the inhomogeneous states of the bounded
spherical model induced by antiperiodic [6] and twisted [7] boundary conditions were
investigated.

The results obtained for inhomogeneous states of the spherical model possess
some unexpected features. The phase transition temperatureTc of a four-dimensional
ferromagnetic slab consisting ofN � 1 layers turns out to be higher than that of the
bulk in the case offree-edgeboundary conditions [4]. The two-domain state induced by the
magnetic field±H in two half-spaces is characterized by theDW width diverging and the
domain magnetization vanishing in the limitH → 0, i.e. in contrast to the underlying Ising
model the spherical model does not exhibit phase separation [5]. As was argued already
in [4], such features are the result of the global spin constraint [1], which obviously becomes
not so good in the inhomogeneous case.
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Another version of the spherical model—the model of isotropicD-component classical
spin vectors in the limitD → ∞—was proposed by Stanley [8, 9], who showed that in the
homogeneous case this model is equivalent to the spherical model by Berlin and Kac [1].
The normalization condition for a spin on a lattice sitei, |mi | = 1, becomes, in the case
where D → ∞, very similar to the global spin constraint, which is the reason for the
equivalence of the two models. However, since the spin normalization condition does not
mix the spin variables on different lattice sites, theD-vector model by Stanley withD → ∞
is more physically appealing than the original spherical model. Moreover, the two models
become non-equivalent in a general inhomogeneous situation, where, as was shown by
Knops [10], theD = ∞ model corresponds to some generalization of the spherical model
using a local spin constraint. This idea was substantiated in the work by Costacheet al
[11], who calculated the Curie temperatureTc(N) of a ferromagnetic film ofN � 1 layers
with free boundary conditions in four dimensions using a set of independent spin constraints
in each layer. The numerically calculated values ofTc(N) monotonically increase withN
to the bulk valueTc(∞), which is physically expected and differs from the result of Barber
and Fisher [4] for the standard spherical model.

The further advantages of theD-vector model are the possibilities of consideration of
finite-D and anisotropic systems. The latter is important, in particular, for the calculation
of finite-size corrections toTc of ferromagnetic films mentioned above in the actual three-
dimensional case. Since such a film withN < ∞ is a two-dimensional system, theTc

corrections are finite only in the presence of the stabilizing uniaxial anisotropy [12]. In
spite of its advantages in comparison to the standard spherical model, theD-vector model
with D � 1 was much less used than mentioned. As exceptions one can cite the works by
Abe and Hikami [13, 14] and by Okabe and Masutani [15] dealing with the 1/D expansion
for three-dimensional systems and the work by Okamoto [16] where the uniaxial spherical
model with a transverse field was considered.

It should be noted that practically all the researchers dealing with theisotropic D-
vector model used the designationsN or n instead of the originalD. Such a modification
is, however, not justified in a general anisotropic case, where the numbern of the relevant
order parameter components determining the symmetry and thus the universality class of a
system can be different fromD. As an example one can consider the rather general ‘n−D

model’ [17, 18] having the firstn 6 D components coupled by the exchange interaction
with equal strength and the remainingD − n components ‘free’. Among realizations of
the n − D model are, in particular, thex − y model (D = 3, n = 2) and the plane rotator
one (n = D = 2) belonging to the same universality class determined byn but having
different values ofTc depending on bothn andD. Correspondingly, in a general case the
1/n expansion of the critical indices is not the same as the 1/D expansion of non-universal
quantities.

The general qualitative result of [5], the absence of the phase separation in the spherical
model (but not the disappearance of the domain magnetization!), can be explained by the fact
that this model behaves in the bulk like theisotropicD = ∞ model [8, 17], which obviously
exhibits no phase separation. For theD-vector model the separation of a specimen into
domains with opposite magnetizations by domain walls of a finite width requires an easy-
axis anisotropy, which makes the intermediate orientation of the magnetization in the wall
energetically unfavourable in comparison to that in domains. Clearly, this actual situation
cannot be treated either with the help of the spherical model in its standard formulation [1],
or as well as with the improved version [11, 19], which is equivalent to theisotropicD = ∞
model in the general inhomogeneous case.

The problem arising here—the study of the influence of thermal fluctuations on the
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domain wall structure—is not only important for comparing the properties of different
versions of the spherical model. The physics of domain walls at elevated temperatures is
itself a rather interesting and unexplored area, whereas since the seminal work by Landau
and Lifshitz [20] the majority of researchers have addressed the zero-temperature statics and
dynamics ofDWs based on the assumption of the constant magnitude of the magnetization
in the wall.

The first theoretical investigation of the temperature variation of the structure of domain
walls is due to Bulaevskii and Ginzburg [21], who with the help of the phenomenological
version of theMFA, using a macroscopic Landau free energy in the vicinity ofTc, predicted
a phase transition from Bloch to linearDWs in uniaxial ferromagnets at someTB < Tc.
Qualitatively this phase transition can be explained by the fact that the spins in the centre of
a Bloch wall, which are forced to lie perpendicular to the easy axis, experience a molecular
field smaller than in domains and hence order at some temperatureTB less thanTc, which
leads to linear (Ising-like) walls (LW) in the regionTB < T < Tc. For ferromagnets whose
anisotropy energy is much smaller than the exchange interaction, theLW temperature region
is narrow.

The transition from Bloch to linear walls atT = 0 depending on the anisotropy was
investigated by van den Broek and Zijlstra [22] with numerical methods. It was found that
LWs are realized if the ratio of the anisotropy energy to the exchange one exceeds2

3; the
DW width δ is, in this case, comparable with the lattice spacinga0. Later this transition was
discovered by Sarkeret al [23] in the framework of a formal soliton theory independently
of Bulaevskii and Ginzburg. The problem was also addressed by Niez and Lajzerowicz
[24, 25], where the factor23 mentioned above was calculated analytically.

The first indirect experimental evidence for the transition from Bloch to linear domain
walls was obtained from the optical observations of the temperature dependence of the
period of the domain structure in YFeO3 just belowTc [26]. Lately theLWs were observed
in the dynamical susceptibility experiments on the low-temperature ferromagnets GdCl3

[27] and LiTbF4 [28]. In [29, 30] theDW mobility was calculated in the whole temperature
range, which exhibited a deep minimum atTB. Such a minimum was observed recently
in the dynamical susceptibility experiments on the high-temperature Ba and Sr hexaferrites
[31, 32].

Recent experiments also provided evidence of strong fluctuational effects about the
DW phase transition. The transition temperatureTB was substantially lower than its mean-
field estimate, and the critical indexβB of the Bloch-wall order parameter (the transverse
magnetization in the centre of the wall) was about 0.1 in contrast to theMFA value 1

2. Such
strong fluctuations are not actually surprising since a domain wall is a two-dimensional
object. The analysis by Lawrie and Lowe [33] using renormalization-group arguments
has led to the clear result that a domain wall in abiaxial ferromagnetic model having
an additional anisotropy in thex, y plane (which is usually the effective one due to the
magnetostatic field [20]) belongs to the universality class of the two-dimensional Ising
model, and hence one can expectβB = 1

8. In contrast, in a purely uniaxial model without
the dipole–dipole interaction, a domain wall behaves like a two-dimensional plane rotator
model and can show only the Kosterlitz–Thouless phase transition without ordering to a
Bloch wall.

The absence of the long-range order (i.e. the transverse magnetization component) in
a domain wall in a purely uniaxial ferromagnet can be demonstrated with the help of the
linear spin-wave theory. The thermal disordering of Bloch walls is due to the so-called
Winter magnons [34], the excitations localized on the domain wall with the dispersion
law ε2

q ∝ Aq2(Aq2 + K⊥) (A is the inhomogeneous exchange constant,K⊥ is the in-
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plane anisotropy constant andq is a two-dimensional wavevector). The first factor inε2
q

corresponds to the free translational motion of the wall and the second describes the rotation
of the magnetization in the centre of the wall in thex, y plane. It can be seen that the
number of Winter magnons, which in the classical case is proportional to

∫
d2q/εq , diverges

logarithmically at smallq, if K⊥ tends to zero. Thus, in a purely uniaxial ferromagnetic
model the linear walls cannot order to the Bloch ones at any non-zero temperature. For a
small non-zero in-plane anisotropyK⊥ the shift ofTB from its MFA value due to fluctuations
should be essential.

The aim of this work is to find an exact solution for the domain wall magnetization
profile in biaxial ferromagnets at non-zero temperatures and their transition temperatureTB

in the framework of the spherical model in itsD-vector version. Instead of modifying the
approach of [4, 5] based on the calculation of the partition function with the steepest-descent
method, we will use the diagram technique for classical spin systems [17, 35]. This diagram
technique, which is a generalization of the ‘Ising part’ of the spin operator diagram technique
of Vaks et al [36, 37], makes it possible to locate and sum up all the diagrams surviving
in the limit D → ∞ and can be reformulated for our present purposes for inhomogeneous
situations.

The approximation obtained by summing up such diagrams (without going to the limit
D → ∞) is the so-called self-consistent Gaussian approximation (SCGA), which was first
formulated by Horwitz and Callen [38] for the Ising model (D = 1). SCGA yields rather
good results for the thermodynamic quantities of the Ising [39] and the classical Heisenberg
(D = 3) [40] models on three-dimensional lattices in the whole temperature range and
can be of importance for a possible improvement of the presently obtained results for the
domain wall structure in the spherical limit with regard to systems with finiteD. A detailed
description of the classical spin diagram technique andSCGA can be also found in a recent
publication [18].

The rest of the paper is organized as follows. In section 2 the diagram technique
for classical spin systems and the construction ofSCGA in the inhomogeneous case is
described. In section 3SCGA is simplified forD → ∞, and a closed system of equations
for magnetization and the spin–spin correlation function describing the domain wall in the
spherical limit is derived. In section 4 the magnetization profile of a fluctuating domain
wall is calculated and the dependence of the transition temperatureTB on the anisotropy
parameters is analysed. In section 5 further problems of theDW statics and dynamics at
elevated temperatures are discussed.

2. Classical spin diagram technique andSCGA

The appropriate classicalD-vector Hamiltonian with biaxially anisotropic ferromagnetic
exchange interaction can be written in the form

H = − 1
2

∑
ij

Jij

(
mzimzj + ηmyimyj +

D∑
α=3

ηαmαimαj

)
(2.1)

where i, j are the lattice sites,mi is the normalizedD-component vector,|mi | = 1, the
dimensionless anisotropy factors satisfyηα < η < 1 and allηα are, for simplicity, taken to be
equal to each other. ForD = 3 equation (2.1) reduces to the anisotropic classical Heisenberg
model. In the chosen geometry the average magnetization in the bulk is directed parallel or
antiparallel to the easy axisz, in the centre of a Bloch wall it takes on one of two possible
orientations along the second easy axisy. All variables describing the magnetization profile
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of a planeDW are functions of the coordinatex only. The temperature-normalized molecular
field ξi acting on a spin on the sitei from its neighbours is given by

ξi = −∂(βH)

∂mi

= β
∑

j

Jij

(
mzjez + ηmyjey +

D∑
α=3

ηαmαjeα

)
(2.2)

where β ≡ 1/T and e are unit vectors in appropriate directions. The mean-field
approximation consists in neglecting fluctuations of the molecular fieldξi ; replacing
mzj ⇒ 〈mzj〉, myj ⇒ 〈myj 〉 and mαj ⇒ 0 in (2.2), one arrives at the inhomogeneous
Curie–Weiss equation

〈mi〉 = B(ξi)ξi/ξi (2.3)

whereB(ξ) is the Langevin function. For small anisotropy (1− η � 1) the magnetization
varies slowly on the scale of the lattice spacing, and the continuous approximation can
be applied to (2.3). In this case the zero-temperature results of Landau and Lifshitz [20]
and the finite-temperature ones of Bulaevskii and Ginzburg [21] for theDW magnetization
profile are recovered (see below).

Fluctuations of the molecular field (2.2) can be taken into account within the framework
of a perturbative scheme based on the diagram technique for classical spin systems
[17, 18, 35]. The perturbative expansion of the thermal average of any quantityA
characterizing a classical spin system (e.g.A = mi) can be obtained by rewriting (2.1)
as H = H0 + Vint, whereH0 is the MFA Hamiltonian with the averaged molecular field
determined by (2.3), and expanding the expression

〈A〉 = 1

Z
∫ N∏

j=1

dmj A exp(−βH) |mj | = 1 (2.4)

in powers ofVint. The averages of various spin vector componentsα, β, γ, . . . = 1, . . . , D

on various lattice sitesi, j, k, . . . with the HamiltonianH0 can be expressed through spin
cumulants,3··· (see below), in the following way:

〈mαi〉0 = 3αi

〈mαimβj 〉0 = 3αβiδij + 3αi3βj (2.5)

〈mαimβjmγk〉0 = 3αβγ iδijk + 3αβi3γkδij + 3βγj3αiδjk + 3γαi3βj δki + 3αi3βj3γk

etc, whereδij , δijk etc are the site Kronecker symbols equal to 1 for all site indices coinciding
with each other and to zero in all other cases. For one-site averages (i = j = k = · · ·)
equation (2.5) reduces to the well known representation of moments through cumulants
(semi-invariants), generalized for a multi-component case. In the graphical language (see,
for example, figure 1) the decomposition (2.5) corresponds to all possible groupings of small
circles (spin components) into oval blocks (cumulant averages). The circles coming from
Vint (the ‘inner’ circles) are connected pairwise by the wavy interaction lines representing
the quantityηαβJij . In diagram expressions the summation over the coordinatesi and
component indicesα of inner circles is carried out. One should not take into account
disconnected diagrams (i.e. those containing disconnected parts with no ‘outer’ circles
belonging toA in (2.4)), since these diagrams are compensated for by the expansion of
the partition functionZ in the denominator of (2.4). Consideration of numerical factors
shows that each diagram contains the factor 1/ns , wherens is the number of the symmetry
group elements of a diagram (see equations (2.9) and (2.10), the symmetry operations do
not concern outer circles). In the homogeneous case it is more convenient for practical
calculations to use the Fourier representation and calculate integrals over the Brillouin zone
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Figure 1. Self-consistent Gaussian approximation (SCGA) for classical spin systems. (a), (c)
block summations for the renormalized magnetization and pair spin cumulant averages; (b):
Dyson equation for the spin–spin correlation function.

rather than lattice sums. As the lattice sums are subject to the constraint that the coordinates
of the circles belonging to the same block coincide with each other (due to the Kronecker
symbols in (2.5)), in the Fourier representation the sum of wavevectors coming to or going
out of any block along interaction lines is zero. The cumulant spin averages in (2.5) can
be obtained by differentiating the generating function3(ξ) = ln Z0(ξ) over appropriate
components of the dimensionless molecular fieldξ:

3α1α2..αp
(ξ) = ∂p3(ξ)

∂ξα1∂ξα2..∂ξαp

(2.6)

whereZ0(ξ) = constant× ξ−(D/2−1)ID/2−1(ξ) is the partition function of aD-component
classical spin and Iν(ξ) is the modified Bessel function. The two lowest-order cumulants
which will be needed below can be written explicitly as

3α(ξ) = B(ξ)
ξα

ξ

3αβ(ξ) = B(ξ)

ξ

(
δαβ − ξαξβ

ξ2

)
+ B ′(ξ)

ξαξβ

ξ2

(2.7)

where δαβ is the spin-component Kronecker symbol,B(ξ) = d3(ξ)/dξ is the Langevin
function forD-component spins andB ′(ξ) ≡ dB(ξ)/dξ . The expressions for the three- and
four-spin cumulants can be found in [35]. It should be stressed that the spin cumulants (2.7)
appearing in the diagrams generated originally by the expansion of (2.4) in powers ofVint

(the unrenormalized diagrams) simplify, since there are only a few non-zero components of
the molecular fieldξ (for a domain wall in the chosen geometryξz andξy). The complete
form of spin cumulants (2.7) is needed, however, for the construction ofSCGA allowing for
the fluctuations of other components of the molecular field. For Ising systems the classical
spin diagram technique coincides with the ‘Ising part’ of the standardSDT [36, 37] and can
be used with Brillouin functionsBS of a general spinS. In the book [37] more technical
details concerning the construction ofSDT for Ising systems can be found, which play the
same role in the present classicalSDT.
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The next step beyondMFA is the self-consistent Gaussian approximation taking into
accountpair correlations of the molecular field acting on a given spin from its neighbours,
which implies the Gaussian statistics of the molecular field fluctuations (see figure 1). Since
subsequently we are going to take the limitD → ∞, only fluctuations of the molecular
field components withα = 3, . . . , D should be taken into account, because their total
contribution exceeds that of the fluctuations ofz and y components by a factor of the
order ofD. The diagram sequence represented in figure 1 is equivalent to a closed system
of nonlinear equations for the averaged magnetization〈mi〉 and the correlation function
Sαα

ij ≡ 〈mαimαj 〉 of the spin components withα = 3, . . . , D. The diagrammatic equation
in figure 1(a) is the generalization of the Curie–Weiss equation (2.3) for the magnetization
(the angle brackets are dropped):

mi = ∂3̃(ξi , lαi)/∂ξi = 3̃z(ξi , lαi)ez + 3̃y(ξi , lαi)ey (2.8)

where the (averaged) molecular fieldξi is given by the expression (2.2) without the last
term andlαi is related to the dispersion of the molecular field fluctuations on the sitei:

lαi ≡ 1

2!
〈ξαiξαi〉 = 1

2!
η2

αβ2
∑
jj ′

JijJij ′Sαα
jj ′ . (2.9)

The spin cumulant averages̃3··· on a sitei (see figures 1(a) and (c)) renormalized by
Gaussian fluctuations of the molecular field are given by

3̃··· = 3··· +
D∑

α=3

3···ααlα +
D∑

α,β=3

(
1 − δαβ + 1

2!
δαβ

)
3···ααββlαlβ + · · · (2.10)

where taking into account only the first term corresponds toMFA. These series, describing
the influence of pair-correlated fluctuations of different components of the molecular field,
can be rewritten as

3̃··· =
D∏

α=3

∞∑
nα=0

1

nα!

(
lαi

∂2

∂ξ2
α

)nα

3···(ξi ) = exp

[ D∑
α=3

lαi

∂2

∂ξ2
α

]
3···(ξi ) . (2.11)

Such exponential differential operators were considered by Horwitz and Callen [38] for the
Ising model. Generalization of their results for the multi-component case yields a closed
formula

3̃··· = 1

π(D−2)/2

∫
dD−2r e−r2

3···(ζi ) (2.12)

whereζi is the spread molecular field given by

ζi ≡ ξi + 2
D∑

α=3

l
1/2
αi rαeα (2.13)

and the integration in (2.12) is performed with respect to the(D − 2)-component vector
variabler ≡ {rα}.

The Dyson equation for the spin–spin correlation functionSαα
jj ′ entering (2.9) is

represented in figure 1(b) and has the analytical form

Sαα
jj ′ = 3̃ααj δjj ′ + 3̃ααjηαβ

∑
r

JjrS
αα
rj ′ . (2.14)

Applying this equation twice, one can simplify the expression for the quantitylαi to

lαi = 1

23̃ααi

(
Sαα

ii

3̃ααi

− 1

)
. (2.15)
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The system ofSCGA equations for a domain wall in a biaxial ferromagnet stated above
simplifies for a small anisotropy (1− η � 1) and in the limitD → ∞, which will be
pursued in the next section. Forηα = 0 the molecular field fluctuations measured by the
quantity lαi vanish according to (2.14) and (2.15), and the magnetization equation (2.8)
reduces to theMFA result (2.3).

3. The spherical limit

In the spherical limitD → ∞ the Langevin functionB(ξ) (see equations (2.3) and (2.7))
simplifies to

B(ξ) ∼= x

1 + √
1 + x2

(3.1)

where the scaled variablex (which should not be confused with the coordinatex appearing
below) is given byx ≡ 2ξ/D. Correspondingly, the spin cumulant averages (2.6) considered
as functions ofx can be estimated as

3α1α2···αk
∝ D1−k . (3.2)

With the help of this estimate it can be shown that in the limitD → ∞ SCGA becomes
exact, since all other more complicated diagrams die out, at least as 1/D [35]. Indeed, a
unification of two oval blocks into a larger one, which leads to a more complicated diagram
(e.g.3αα · 3ββ ⇒ 3ααββ in figure 1), leads to the appearance of an additional factor 1/D,
since

3α1α2···αm+n
∝ 3α1α2···αm

· 3αm+1···αm+n
/D . (3.3)

In [35] some such higher-order diagrams were considered in the framework of the 1/D

expansion for low-dimensional classical ferro- and antiferromagnets.
For the consideration of the limitD → ∞ it is convenient to introduce the well behaved

dimensionless temperature variableθ ≡ T/T MFA
c , whereT MFA

c = J0/D andJ0 is the zero
component of the exchange interaction, as well as the furtherD-independent variables:

Gi ≡ (D/θ)3̃ααi l̃i ≡ lαi/D sii ′ ≡ DSαα
ii ′ . (3.4)

Expression (2.15) can now be rewritten as

l̃i = 1

2θGi

(
sii

θGi

− 1

)
(3.5)

and the expression for the square of the spread value of the argumentx in (2.12) reads

x2
i ≡

(
2ζi

D

)2

=
(

2

θ

∑
j

λijmzj

)2

+
(

2η

θ

∑
j

λijmyj

)2

+ 16l̃i
D

D∑
α=3

r2
α (3.6)

where λij ≡ Jij /J0. It can be seen that the contributions of the fluctuations of theα-
components of the molecular field to (3.6) (each of them is small as 1/D) are essential
due to their large number. Now the Gaussian integrals (2.12) can be easily calculated (for
D � 1) by applying the identity

1

π1/2

∞∫
−∞

dx e−x2
f (ax2) ∼= f (a/2) a � 1 (3.7)
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successivelyD − 2 times. Thus, the integration leads simply to the replacementr2
α ⇒ 1

2
in (3.6). Now for the quantityGi (equation (3.4)) with the use of the second equation
of (2.7) and the asymptotic expression (3.1) one gets

Gi = 2

θ

1

1 +
√

1 + x2
i

. (3.8)

The magnetization equation (2.8) can be simplified by using the first of equation of (2.7)
and (3.1) to

mzi = Gi

∑
j

λijmzj myi = ηGi

∑
j

λijmyj . (3.9)

Finally, determiningx2
i from (3.8) as a function ofGi , equating it to (3.6) withr2

α = 1
2 and

using (3.5) and (3.9), one arrives at the equation

sii + m2
i = 1 (3.10)

which is nothing but the kinematic identitym2
i = 1 in the limit D → ∞. The

normalized correlation functionsii ′ determined by (3.4) satisfies the following linear equation
from (2.14),

sii ′ = θGiδii ′ + ηαGi

∑
j

λij sji ′ (3.11)

with the variable coefficientGi . Equations (3.9)–(3.11) constitute the closed system of
equations, which can be applied to the calculation of the domain wall magnetization profile
in the spherical limit.

In the homogeneous case (or in one of the domains)my = 0 andmz andG are constants.
In this case equation (3.11) can be easily solved with the help of the Fourier transformation,
which results in

sii = v0

∫
dq

(2π)3
sq = θGP (ηαG) P (X) ≡ v0

∫
dq

(2π)3

1

1 − Xλq
(3.12)

wherev0 is the unit cell volume andλq ≡ Jq/J0. In the long-wavelength limitλq
∼= 1−αq2,

whereα ∼ a2
0 and a0 is the lattice spacing. The lattice integralP(X) has the following

properties:

P(X) ∼=
{

1 + X2/z X � 1

W − c0 (1 − X)1/2 1 − X � 1
(3.13)

wherez coincides with the number of nearest neighboursNN for the NN interactions andW
(the Watson integral) andc0 = v0/(4πα3/2) are lattice-dependent constants. For a simple
cubic (SC) lattice v0 = a3

0 and α = a2
0/6, hencec0 = (2/π)(3/2)3/2. Since the sum in

the right-hand part of the first equation of (3.9) equalsmz, this equation is satisfied only if
mz = 0 (aboveTc) or G = 1 (belowTc). In these cases from equation (3.10) one gets the
temperature-dependent magnetizationm ≡ mz:

m = (1 − θ/θc)
1/2 θ 6 θc ≡ 1/P (ηα) . (3.14)

It can be seen that in the fully isotropic case (η = ηα = 1) the value of the phase transition
temperature in the bulkθc = 1/P (ηα) reduces to the well known resultθc = 1/W [1].

The width of a Bloch wallδB in a uniaxial ferromagnet is determined by the balance
between the anisotropy and inhomogeneous exchange energies. For small anisotropy
(1 − η � 1) the conditionδB � a0 is fulfilled. In this case the change of the domain
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wall magnetization at a distance ofa0 is small, and for systems with the nearest-neighbour
interactions one can rewrite the lattice sum in (3.9) about some pointr ≡ ri as∑

j

λijmj
∼= m(r) + α1m(r) (3.15)

where the second term with the Laplace operator1 is small in comparison to the first
one. The quantityGi in (3.9) determined by (3.4) is in the small-anisotropy case also a
continuous function of the coordinate with the scaleδ. Moreover, as can be seen from (3.9)
and (3.15), the deviation ofG from its bulk value 1 is small, i.e.

G(r) = 1 + G1(r) G1 � 1 . (3.16)

Now one can rewrite the equations (3.9) in terms of the normalized magnetizationn ≡
m/me, whereme is the equilibrium bulk magnetization given by (3.14). The result in the
chosen geometry is of the form

αn′′
z (x) = −G1(x)nz(x)

αn′′
y(x) = −G1(x)ny(x) + (1 − η)ny(x) .

(3.17)

The kinematic equation (3.10) can be represented in terms ofn as

ε(1 − n2) = θcsii/θ − 1 ε ≡ θc/θ − 1 . (3.18)

Unlike the magnetization equation (3.9), the equation for the correlation function (3.11)
cannot, in general, be written in a continuous form of the type (3.17). In the general case
we are going to consider, whereηα is not necessarily close to 1, the correlation length of
the α spin components belowθc,

ξcα =
√

αηα/(1 − ηα) (3.19)

(not to be confused with components of the normalized molecular fieldξ), which can be
determined fromsq in (3.12), can be comparable with the lattice spacinga0. Moreover,
even in the case 1−ηα � 1 the continuous approximation forsii ′ does not yield the correct
bulk result (3.12) which is formed by integration over the whole Brillouin zone and not
only over the long-wavelength regionq � 1. But it can, nevertheless, be applied for the
calculation of the wall properties, as we shall see below.

4. Domain wall magnetization profile

Before proceeding to the solution of equations (3.17), (3.18) and (3.11) in the general
situation, let us first consider the caseηα = 0, where the spin fluctuations play no role and
the situation is described exactly byMFA. Here the solution of (3.11) yieldssii = θGi , and
with the help of (3.18) one getsG1(x) = ε[1 − n2(x)]. Adopting it in (3.17) and solving
the resulting equations, one arrives at the magnetization profile [21, 23]

nz = ± tanh(x/δ) ny = ±ρ/ cosh(x/δ) (4.1)

where

ρ =
{ √

1 − τ τ ≡ 2(1 − η)/ε 6 1

0 τ > 1
δ =

{
δB =

√
α/(1 − η) τ 6 1

δL =
√

2α/ε = δBτ 1/2 τ > 1 .

(4.2)

It can be seen that the crossover from the Bloch (ρ = 1) to the linear (ρ = 0) wall proceeds
with increasing temperature through the elliptic one havingn2

z +n2
y/ρ

2 = 1 with 0 < ρ < 1,
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and the transverse component of the magnetization in the wall,ny , disappears through a
second-order phase transition. The temperature of theDW phase transition can be written
in three forms:

τB = 1 εB = 2(1 − η) � 1 θB = 1/(1 + εB) ∼= 1 − εB (4.3)

the quantityτ playing the same role for aDW as the ‘absolute’ temperatureθ for the
bulk (cf equation (3.14)). The temperature-dependent factorρ in (4.1) can be interpreted
as theDW order parametermB [31, 32]. Whereas the Bloch-wall widthδB is temperature-
independent, the width of the linear wallδL is determined by the balance of the homogeneous
and inhomogeneous exchange energies and is diverging atθc. Considering the first of
equations (4.1) forx � δL, one can identify

1 − tanh(x/δL) ∼= exp(−x/ξcz) H⇒ δL = 2ξcz (4.4)

where ξcz is the correlation length of thez spin components. One should also note the
analogy between the Bloch-wall widthδB (4.2) and the transverse correlation lengthξcα

(3.19), which coincide for a purely uniaxial (ηα = η) model with small anisotropy. The
function G1 entering the equations (3.17) can be written as

G1(x) = ε(1 − ρ2)

cosh2 (x/δ)
= 2α

δ2

1

cosh2 (x/δ)
. (4.5)

Sinceα ∼ a2
0, in the small-anisotropy caseG1 ∼ (a0/δ)

2 � 1 in the whole temperature
interval.

Now we proceed to the solution of the magnetic interface problem described by the
equations (3.17), (3.18) and (3.11) in the general caseηα 6= 0. The solution of the Dyson
equation for the correlation function (3.11) depends on the relation between the correlation
length ξcα (3.19) and the other length scales,a0 and δ. If ξcα � a0, which is satisfied for
1 − ηα � 1, the continuous approximation to equation (3.11) can be applied. Ifξcα � δ

(i.e. 1− ηα � 1− η, see (4.2)), the correlation functionsij can be easily calculatedlocally
with respect to the slowly changing magnetization profile (or, more exactly, the profile of
G) in the wall. For uniaxial ferromagnets with a small anisotropy (1− η � 1) considered
throughout this paper these limiting cases overlap in the region 1− η � 1 − ηα � 1. Let
us consider first the caseξcα � δ. Here one can make a replacementGi ⇒ Gi ′ in (3.11),
after which this equation can be solved as in the homogeneous case. With the use of (3.12)
and (3.16) one gets

sii
∼= θGiP (ηαGi) ∼= θP (ηα)[1 + I (ηα)G1(x)] (4.6)

where

I (ηα) = 1 + ηαP ′(ηα)

P (ηα)
∼=


1 + 2η2

α/z ηα � 1

c0

2P(ηα)

1√
1 − ηα

1 − ηα � 1
(4.7)

andc0 is determined by (3.13). Now with the use of (4.6) and (3.18) one can expressG1

through the magnetization profilen(x):

G1(x) = ε[1 − n2(x)]I−1(ηα) . (4.8)

This expression differs only by a constant from that used in the beginning of this section in
the MFA limit ηα = 0. Solving now the magnetization equations (3.17) as above, one gets
the sameDW magnetization profile (4.1), where the parametersρ andδ are given by (4.2)
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with the renormalizedDW temperature:τ ⇒ τ̃ ≡ τI (ηα). The critical values of the three
temperature variables (cf equation (4.3)) now read

τB = I−1(ηα) < 1 εB = 2(1 − η)I (ηα) θB = θc/(1 + εB) (4.9)

whereθc is given by (3.14). One can see from (4.9) and (4.7) that for 1− ηα � 1 the
effective transition temperatureτB becomes small. On the other hand, due to the validity
condition 1−ηα � 1−η the absolute temperatureθB of the DW phase transition remains in
the limiting case under consideration close toθc (εB � 1). It can be seen that in this case the
domain wall does not demonstrate any two-dimensional behaviour, and its phase transition
at θB < θc can still be described qualitatively by the effective diminishing of the ordering
interaction for the wall spins forced perpendicularly to the easy axisz, as was said in the
introduction. The effect in the case where 1− ηα � 1 is much larger than according to the
MFA estimates because of the divergence of the functionI (ηα) (equation (4.7)). Accordingly,
the width of the linear wall can considerably exceed its mean-field value (4.2):

δL =
√

2α

ε
I 1/2(ηα) ∼=

√
αc0

εP (ηα)

1

(1 − ηα)1/4
(4.10)

in the case where 1− ηα � 1. SinceδL is related to the longitudinal correlation length (see
equation (4.4)), this result shows a non-trivial influence of fluctuations of transverse spin
components on the longitudinal spin correlations in the anisotropic spherical model. One
can also check that the functionG1(x) (equation (4.8)) is still given by the expression (4.5)
with the changed value of theDW width δ.

In the other limiting case,ξcα � a0, a continuous approximation of the type (3.15) can
be applied to the Dyson equation (3.11). Making the Fourier transformation with respect to
the coordinatesy andz and using the conditions 1− ηα � 1 and (3.16) one arrives at the
differential equation for the correlation function

αs ′′(x) − [1 − ηα + αq2 − G1(x)]s(x) = −θδ(x − x ′) (4.11)

whereq2 ≡ q2
y + q2

z and the ‘mute’ argumentx ′ of s was dropped. This equation should be
solved to yields with x = x ′ as a function or functional ofG1, andsii (cf equation (4.6))
should be obtained by the integration ofs over qy and qz. Then, as above,G1 should
be found from (3.18) and used in the magnetization equations (3.17). All this seems to
be too complicated since equation (4.11) cannot be solved analytically for the arbitrary
function G1(x). But the expected result that theDW transition temperatureθB turns to zero
in the purely uniaxial caseηα = η signals that there should be an exact solution to the
problem. We can try to find it assuming thatG1(x) has the same functional form as above,
equation (4.5), with some renormalized value of theDW width δ as a parameter. Then using
a new variableu ≡ tanh(x/δ), equation (4.11) can be rewritten as

d

du
(1 − u2)

ds

du
+

(
2 − µ2

1 − u2

)
s(u) = −δθ

α
δ(u − u′) µ2 ≡ δ2

α
(1 − ηα + αq2)

(4.12)

and solved in terms of the adjoined Legendre functions

P±µ

1 (u) = u ± µ

0(2 ± µ)

(
1 + u

1 − u

)±µ/2

(4.13)

which leads to

s(x, x ′, q) = θδ

2αµ
exp

(
−µ

δ
|x−x ′|

) [
1+ 1−tanh(x/δ) tanh(x ′/δ)

µ2 − 1

(
1+µ tanh

|x−x ′|
δ

)]
.

(4.14)
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This (not translationally invariant) expression can be reduced in the casex = x ′ with the
help of (4.5) to the form

s(x, x, q) = θ

2α1/2
√

1 − ηα + αq2

[
1 + G1(x)

2[1 − ηα − (1 − η)/δ̃2 + αq2]

]
(4.15)

whereδ̃ ≡ δ/δB (see equation (4.2)). Since the structure of this expression is analogous to
that of (4.6), it is now clear that the choice ofG1 in the form (4.5) was right. Integrating
(4.15) over the two-dimensional wavevectorq to getsii and proceeding as above, one gets
functionally the same results (4.1), (4.2) with a new renormalizedDW temperature

τ̃ ≡ τI (ηα, η, δ̃) (4.16)

where

I (ηα, η, δ̃) = c0

4P(ηα)

δ̃√
1 − η

ln
δ̃
√

1 − ηα + √
1 − η

δ̃
√

1 − ηα − √
1 − η

. (4.17)

The latter simplifies in the limit 1− ηα � 1 − η to the second limiting expression in (4.7).
It can be seen from (4.15) that in the case under consideration, 1− ηα � 1, the integral
(4.17) is determined by the long-wavelength region, which justifies using the continuous
approximation for the transverse correlation functions. In the region of elliptic walls (̃τ < 1)
one hasδ = δB and hence in (4.17),̃δ = 1. The critical values of both theDW-temperature
τ and the absolute temperatureθ (4.9) determined now byI (ηα, η, 1) go to zero in the
uniaxial limit:

τB ∝ θB ∝ 1
/

ln
1

η − ηα

ηα → η (4.18)

which corresponds to the two-dimensional nature of the domain walls. One can see that the
two-dimensional effects lead to a further decrease of theDW phase transition temperature:
τB ≡ I−1(ηα, η, 1) < τ

(0)
B ≡ I−1(ηα), whereI (ηα) is given by (4.7).

In the linear-wall region (̃τ > 1) the normalized wall width̃δ is given by the solution
of the transcendental equationδ̃2 = τI (ηα, η, δ̃) following from (4.2) and (4.16). The latter
can be rewritten in the natural units in the form

δL =
√

α

2ε

c0

P(ηα)
ln

δL + ξcα

δL − ξcα
(4.19)

whereξcα is the transverse correlation length given by (3.19). Far fromτB, whereδL � ξcα,
the solution of (4.19) leads to the formula (4.10). This asymptotic dependence can be also

represented in the form̃δ = √
τI (ηα) =

√
τ/τ

(0)
B , which is the analogue of the Curie–Weiss

asymptote for the bulk susceptibilityχ(T ) of a ferromagnet far aboveTc. In the purely
isotropic model,ηα = η, the linearDW structure is realized in the whole temperature range.
The DW width δL determined by the solution of (4.19) shows a crossover to the Bloch-wall
width δB at low temperatures:

δL
∼= δB

[
1 + 2 exp

(
− 2ε√

1 − η

P (η)

c0

)]
ε ≡ θc/θ − 1 �

√
1 − η . (4.20)

It is worth noting that in this limiting case the longitudinal correlation length,ξcz = δL/2,
is determined by the transverse one,ξcα = δB.

The temperature dependencies of theDW order parametermB ≡ ρ and the normalized
DW width δ̃ are represented in figure 2 for different values ofηα and 1− η = 10−3. One
can see that for 1− ηα = 10−2 the fluctuational decrease of theDW transition temperature
is essential, although two-dimensional effects are still negligible in this case. In contrast,
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Figure 2. Temperature dependencies of the domain wall order parametermB ≡ ρ and theDW

width δ for different values of the second anisotropy parameterηα .

for 1 − ηα = 1.2 × 10−3 they come into play, the corresponding additional diminishing of
the transition temperature becomes essential, and the temperature dependence ofδ̃ in the
logarithmic scale is no longer a straight line.

5. Discussion

In the main part of this paper the structure of domain walls in the biaxial ferromagnetic
model described by the classical-vector Hamiltonian (2.1) was calculated exactly in the
whole temperature rangeT < Tc in the spherical limitD → ∞. The main qualitative
result is that in the purely uniaxial model (ηα = η) the Bloch walls do not exist at any non-
zero temperature (see equation (4.18)) being disordered by thermal fluctuations to the linear
(Ising-like) ones. This result complements the well known fact that the Bloch walls in the
purely uniaxial model (considered within the phenomenological micromagnetic approach
which is equivalent toMFA) cannot move since their maximal velocity (the Walker velocity)
is equal to zero. In the opposite limit,ηα = 0, the model withD → ∞ total spin
components and a finite number (here two) ofinteractingones is realized. In this case spin
fluctuations die out andMFA becomes exact. The temperature of the phase transition from
Bloch to linear wallsTB changes as a function ofηα from its MFA valueTB = (1 − εB)Tc,
εB = 2(1 − η) � 1 at ηα = 0 to 0 atηα = η (see equations (4.3) and (4.9)).

In the actual case of a small anisotropy, 1− η � 1, the behaviour of a domain wall
is more complicated than that of a purely two-dimensional object, since theDW width δ is
much larger than the lattice spacinga0. In the spherical limit this leads to the existence
of two different mechanisms of theDW ordering, depending on the value ofηα. For the
strong anisotropy in the basis plane ‘x, y’, 1 − ηα � 1 − η, the correlation lengthξcα

(3.19) for all temperatures is much shorter than the wall widthδ (equation (4.2)), and the
DW phase transition atTB can be interpreted as the locally shifted bulk one (the ‘perturbed
three-dimensional’ case, see equations (4.6)–(4.9)). In contrast, in the case of the two
anisotropies comparable with each other, 1−ηα ∼ 1−η, the true two-dimensional situation
is realized (see equations (4.17) and (4.18)). Such a separation does not, however, persist
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for models with finite values ofD (e.g. for the Heisenberg model,D = 3), where the
DW phase transition should always be of a two-dimensional character. For such models
the fluctuations of the ordering spin components,mz andmy , also plays a role, and in the
temperature interval aboutTB, where the diverging correlation lengthξcy exceeds theDW

width δ, a two-dimensional behaviour is realized. Sinceδ � a0, this temperature interval
should be much narrower than for a pure two-dimensional system. The asymptotic critical
behaviour of theDW order parametermB = ρ in (4.1) is described by the critical index
βB = 1

8 of the two-dimensional Ising model, as was confirmed experimentally in [31, 32].
As a subject of future investigations, the temperature dependence of theDW

magnetization profile in the self-consistent Gaussian approximation, without going to the
limit D → ∞, can be considered. Although it can be connected with more complicated
numerical calculations, one can expect to obtain, with the help ofSCGA, essentially more
accurate results for domain walls in comparison with the spherical approximation, as was
demonstrated for the bulk properties [40, 18]. The other problem is to formulate dynamic
equations for fluctuating domain walls and to calculate their mobility. Such equations can,
in principle, be obtained with the help of some dynamical generalization of the classical
spin diagram technique [17]. Unfortunately, in the dynamical case one cannot make use of
going to the limitD → ∞ with all related simplifications, and onlySCGA for the Heisenberg
model can be used as the underlying static approach.

A promising field for the application of the methods of this paper is the surface effects
in finite and semi-infinite magnetic systems, which are very sensitive to anisotropy. This
problem was addressed recently in [12].

Acknowledgments
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