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Abstract. The temperature-induced second-order phase transition from Bloch to linear (Ising-
like) domain walls in uniaxial ferromagnets is investigated for the modeDetomponent
classical spin vectors in the limib — oo. This exactly solvable model is equivalent to
the standard spherical model in the homogeneous case, but deviates from it and is free from
unphysical behaviour in a general inhomogeneous situation. It is shown that the thermal
fluctuations of the transverse magnetization in the wall (the Bloch-wall order parameter) result
in the diminishing of the wall transition temperatufg in comparison to its mean-field value,
thus favouring the existence of linear walls. For finite valueswfan additional anisotropy

in the basis plane, y is required; in purely uniaxial ferromagnets a domain wall behaves like
a two-dimensional system with a continuous spin symmetry and does not order into the Bloch
one.

1. Introduction

The spherical model proposed in 1952 by Berlin and Kac [1] (see also [2, 3]) has been used
extensively up to now as the only exactly solvable model describing the phase transition
in three-dimensional magnetic systems. In contrast to the mean-field approximaeron (

the spherical model describes, in a simplified manner, the thermal fluctuations of spins,
which can be taken into account exactly due to their Gaussian nature. The technique
for the consideration ofnhomogeneousystems described by the spherical model was
developed by Barber and Fisher [4] for surface-induced inhomogeneity in layered magnetics
and elaborated by Abraham and Robert [5] for the problem of phase separation (i.e. domain
wall (bw) formation) in the spherical model. Later the inhomogeneous states of the bounded
spherical model induced by antiperiodic [6] and twisted [7] boundary conditions were
investigated.

The results obtained for inhomogeneous states of the spherical model possess
some unexpected features. The phase transition temperaiuoé a four-dimensional
ferromagnetic slab consisting @f > 1 layers turns out to be higher than that of the
bulk in the case ofree-edgeboundary conditions [4]. The two-domain state induced by the
magnetic field+:H in two half-spaces is characterized by the width diverging and the
domain magnetization vanishing in the linfit — 0, i.e. in contrast to the underlying Ising
model the spherical model does not exhibit phase separation [5]. As was argued already
in [4], such features are the result of the global spin constraint [1], which obviously becomes
not so good in the inhomogeneous case.
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Another version of the spherical model—the model of isotrapicomponent classical
spin vectors in the limitOh — oco—was proposed by Stanley [8, 9], who showed that in the
homogeneous case this model is equivalent to the spherical model by Berlin and Kac [1].
The normalization condition for a spin on a lattice sitgm;| = 1, becomes, in the case
where D — oo, very similar to the global spin constraint, which is the reason for the
equivalence of the two models. However, since the spin normalization condition does not
mix the spin variables on different lattice sites, thevector model by Stanley withh — oo
is more physically appealing than the original spherical model. Moreover, the two models
become non-equivalent in a general inhomogeneous situation, where, as was shown by
Knops [10], theD = oo model corresponds to some generalization of the spherical model
using a local spin constraint. This idea was substantiated in the work by Costaehe
[11], who calculated the Curie temperatifgN) of a ferromagnetic film ofv > 1 layers
with free boundary conditions in four dimensions using a set of independent spin constraints
in each layer. The numerically calculated valuesTgfN) monotonically increase wittv
to the bulk valuer.(co0), which is physically expected and differs from the result of Barber
and Fisher [4] for the standard spherical model.

The further advantages of the-vector model are the possibilities of consideration of
finite-D and anisotropic systems. The latter is important, in particular, for the calculation
of finite-size corrections t@, of ferromagnetic flms mentioned above in the actual three-
dimensional case. Since such a film with < oo is a two-dimensional system, thHg
corrections are finite only in the presence of the stabilizing uniaxial anisotropy [12]. In
spite of its advantages in comparison to the standard spherical moddb-vieetor model
with D > 1 was much less used than mentioned. As exceptions one can cite the works by
Abe and Hikami [13, 14] and by Okabe and Masutani [15] dealing with {he éxpansion
for three-dimensional systems and the work by Okamoto [16] where the uniaxial spherical
model with a transverse field was considered.

It should be noted that practically all the researchers dealing withisibteopic D-
vector model used the designatioNsor n instead of the originaD. Such a modification
is, however, not justified in a general anisotropic case, where the numitifethe relevant
order parameter components determining the symmetry and thus the universality class of a
system can be different fro®. As an example one can consider the rather generalD
model' [17, 18] having the firsk < D components coupled by the exchange interaction
with equal strength and the remainiiy — » components ‘free’. Among realizations of
then — D model are, in particular, the — y model (0 = 3, n = 2) and the plane rotator
one @ = D = 2) belonging to the same universality class determined: hut having
different values off. depending on bothh and D. Correspondingly, in a general case the
1/n expansion of the critical indices is not the same as {he &xpansion of non-universal
guantities.

The general qualitative result of [5], the absence of the phase separation in the spherical
model (but not the disappearance of the domain magnetization!), can be explained by the fact
that this model behaves in the bulk like tisetropic D = oo model [8, 17], which obviously
exhibits no phase separation. For thevector model the separation of a specimen into
domains with opposite magnetizations by domain walls of a finite width requires an easy-
axis anisotropy, which makes the intermediate orientation of the magnetization in the wall
energetically unfavourable in comparison to that in domains. Clearly, this actual situation
cannot be treated either with the help of the spherical model in its standard formulation [1],
or as well as with the improved version [11, 19], which is equivalent tagbiteopic D = oo
model in the general inhomogeneous case.

The problem arising here—the study of the influence of thermal fluctuations on the
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domain wall structure—is not only important for comparing the properties of different
versions of the spherical model. The physics of domain walls at elevated temperatures is
itself a rather interesting and unexplored area, whereas since the seminal work by Landau
and Lifshitz [20] the majority of researchers have addressed the zero-temperature statics and
dynamics ofbws based on the assumption of the constant magnitude of the magnetization
in the wall.

The first theoretical investigation of the temperature variation of the structure of domain
walls is due to Bulaevskii and Ginzburg [21], who with the help of the phenomenological
version of theMFA, using a macroscopic Landau free energy in the vicinity'ofpredicted
a phase transition from Bloch to lineaws in uniaxial ferromagnets at son& < Tg.
Qualitatively this phase transition can be explained by the fact that the spins in the centre of
a Bloch wall, which are forced to lie perpendicular to the easy axis, experience a molecular
field smaller than in domains and hence order at some temperaiuess thanT,, which
leads to linear (Ising-like) wallsLy) in the regionTs < T < T.. For ferromagnets whose
anisotropy energy is much smaller than the exchange interactioowtbemperature region
is narrow.

The transition from Bloch to linear walls & = 0 depending on the anisotropy was
investigated by van den Broek and Zijlstra [22] with humerical methods. It was found that
Lws are realized if the ratio of the anisotropy energy to the exchange one ex§e&d&s
pw width § is, in this case, comparable with the lattice spacinglLater this transition was
discovered by Sarkest al [23] in the framework of a formal soliton theory independently
of Bulaevskii and Ginzburg. The problem was also addressed by Niez and Lajzerowicz
[24, 25], where the facto§ mentioned above was calculated analytically.

The first indirect experimental evidence for the transition from Bloch to linear domain
walls was obtained from the optical observations of the temperature dependence of the
period of the domain structure in YFegQust belowT. [26]. Lately theLws were observed
in the dynamical susceptibility experiments on the low-temperature ferromagnets GdCl
[27] and LiTbF; [28]. In [29, 30] thebw mobility was calculated in the whole temperature
range, which exhibited a deep minimum &. Such a minimum was observed recently
in the dynamical susceptibility experiments on the high-temperature Ba and Sr hexaferrites
[31,32].

Recent experiments also provided evidence of strong fluctuational effects about the
DwW phase transition. The transition temperatifigewas substantially lower than its mean-
field estimate, and the critical inde8g of the Bloch-wall order parameter (the transverse
magnetization in the centre of the wall) was about 0.1 in contrast tmrthe/alue%. Such
strong fluctuations are not actually surprising since a domain wall is a two-dimensional
object. The analysis by Lawrie and Lowe [33] using renormalization-group arguments
has led to the clear result that a domain wall irbiaxial ferromagnetic model having
an additional anisotropy in the, y plane (which is usually the effective one due to the
magnetostatic field [20]) belongs to the universality class of the two-dimensional Ising
model, and hence one can exp@gt= %. In contrast, in a purely uniaxial model without
the dipole—dipole interaction, a domain wall behaves like a two-dimensional plane rotator
model and can show only the Kosterlitz—Thouless phase transition without ordering to a
Bloch wall.

The absence of the long-range order (i.e. the transverse magnetization component) in
a domain wall in a purely uniaxial ferromagnet can be demonstrated with the help of the
linear spin-wave theory. The thermal disordering of Bloch walls is due to the so-called
Winter magnons [34], the excitations localized on the domain wall with the dispersion
law &7 o« Ag?(Ag® + K.) (A is the inhomogeneous exchange constdnt, is the in-
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plane anisotropy constant agdis a two-dimensional wavevector). The first factors§1
corresponds to the free translational motion of the wall and the second describes the rotation
of the magnetization in the centre of the wall in they plane. It can be seen that the
number of Winter magnons, which in the classical case is proportionatitg /¢, diverges
logarithmically at smally, if K, tends to zero. Thus, in a purely uniaxial ferromagnetic
model the linear walls cannot order to the Bloch ones at any non-zero temperature. For a
small non-zero in-plane anisotrogy, the shift of Ty from its MFA value due to fluctuations
should be essential.

The aim of this work is to find an exact solution for the domain wall magnetization
profile in biaxial ferromagnets at non-zero temperatures and their transition tempédrature
in the framework of the spherical model in if3-vector version. Instead of modifying the
approach of [4, 5] based on the calculation of the partition function with the steepest-descent
method, we will use the diagram technique for classical spin systems [17, 35]. This diagram
technique, which is a generalization of the ‘Ising part’ of the spin operator diagram technique
of Vaks et al [36, 37], makes it possible to locate and sum up all the diagrams surviving
in the limit D — oo and can be reformulated for our present purposes for inhomogeneous
situations.

The approximation obtained by summing up such diagrams (without going to the limit
D — o0) is the so-called self-consistent Gaussian approximatae4), which was first
formulated by Horwitz and Callen [38] for the Ising modd) & 1). SCGA yields rather
good results for the thermodynamic quantities of the Ising [39] and the classical Heisenberg
(D = 3) [40] models on three-dimensional lattices in the whole temperature range and
can be of importance for a possible improvement of the presently obtained results for the
domain wall structure in the spherical limit with regard to systems with fibiteA detailed
description of the classical spin diagram technique sodA can be also found in a recent
publication [18].

The rest of the paper is organized as follows. In section 2 the diagram technique
for classical spin systems and the constructionsotA in the inhomogeneous case is
described. In section 8cGA is simplified for D — oo, and a closed system of equations
for magnetization and the spin—spin correlation function describing the domain wall in the
spherical limit is derived. In section 4 the magnetization profile of a fluctuating domain
wall is calculated and the dependence of the transition temper@guom the anisotropy
parameters is analysed. In section 5 further problems obthestatics and dynamics at
elevated temperatures are discussed.

2. Classical spin diagram technique andscGA

The appropriate classicdb-vector Hamiltonian with biaxially anisotropic ferromagnetic
exchange interaction can be written in the form

D
H= _% Z Jij (mzimzj + nmyimy; + Z namaimaj) (21)
ij a=3

wherei, j are the lattice sitesm,; is the normalizedD-component vectorim;| = 1, the
dimensionless anisotropy factors satigfy< n < 1 and alln,, are, for simplicity, taken to be
equal to each other. Fd@ = 3 equation (2.1) reduces to the anisotropic classical Heisenberg
model. In the chosen geometry the average magnetization in the bulk is directed parallel or
antiparallel to the easy axis in the centre of a Bloch wall it takes on one of two possible
orientations along the second easy axisAll variables describing the magnetization profile
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of a planedw are functions of the coordinateonly. The temperature-normalized molecular
field &; acting on a spin on the sitefrom its neighbours is given by

d(BH) .
£ =— 3 =p E Jij (mzjez + nmy;ey + E namajea> (2.2)
m; Jj a=3
where 8 = 1/T and e are unit vectors in appropriate directions. The mean-field

approximation consists in neglecting fluctuations of the molecular f§l|dreplacing
mzj = (mg), my; = (my;) andmy; = 0 in (2.2), one arrives at the inhomogeneous
Curie—-Weiss equation

(my;) = B()E; /& (2.3)

where B(¢) is the Langevin function. For small anisotropy {1y « 1) the magnetization
varies slowly on the scale of the lattice spacing, and the continuous approximation can
be applied to (2.3). In this case the zero-temperature results of Landau and Lifshitz [20]
and the finite-temperature ones of Bulaevskii and Ginzburg [21] fopthienagnetization
profile are recovered (see below).

Fluctuations of the molecular field (2.2) can be taken into account within the framework
of a perturbative scheme based on the diagram technique for classical spin systems
[17,18,35]. The perturbative expansion of the thermal average of any qua#tity
characterizing a classical spin system (e4g= m;) can be obtained by rewriting (2.1)
as’H = Ho + Vint, Where’Hy is the MFA Hamiltonian with the averaged molecular field
determined by (2.3), and expanding the expression

1 N
(A) = Z / H dm; Aexp(—BH) lm;| =1 (2.4)
j=1
in powers ofVi,;. The averages of various spin vector components, y,...=1,..., D

on various lattice siteg j, k, ... with the Hamiltonian, can be expressed through spin
cumulants,A... (see below), in the following way:

(mai>0 = Aai
(maimgj)o = Aapidij + NaiAgj (2.5)
(maimgimyr)o = Napyibijx + Napi Ayrdij + ApgyjAaibjx + Nyai Agjdki + Nai AgjAyk

etc, wherej;;, é;x etc are the site Kronecker symbols equal to 1 for all site indices coinciding
with each other and to zero in all other cases. For one-site averages (= k = ---)
equation (2.5) reduces to the well known representation of moments through cumulants
(semi-invariants), generalized for a multi-component case. In the graphical language (see,
for example, figure 1) the decomposition (2.5) corresponds to all possible groupings of small
circles (spin components) into oval blocks (cumulant averages). The circles coming from
Vint (the ‘inner’ circles) are connected pairwise by the wavy interaction lines representing
the quantityn,fJ;;. In diagram expressions the summation over the coordinasasd
component indicesr of inner circles is carried out. One should not take into account
disconnected diagrams (i.e. those containing disconnected parts with no ‘outer’ circles
belonging toA in (2.4)), since these diagrams are compensated for by the expansion of
the partition functionZ in the denominator of (2.4). Consideration of numerical factors
shows that each diagram contains the factor,1wheren, is the number of the symmetry
group elements of a diagram (see equations (2.9) and (2.10), the symmetry operations do
not concern outer circles). In the homogeneous case it is more convenient for practical
calculations to use the Fourier representation and calculate integrals over the Brillouin zone



2354 D A Garanin

(©)

-t

Figure 1. Self-consistent Gaussian approximati@tdgs) for classical spin systems.a) (c)
block summations for the renormalized magnetization and pair spin cumulant averages; (
Dyson equation for the spin—spin correlation function.

rather than lattice sums. As the lattice sums are subject to the constraint that the coordinates
of the circles belonging to the same block coincide with each other (due to the Kronecker
symbols in (2.5)), in the Fourier representation the sum of wavevectors coming to or going
out of any block along interaction lines is zero. The cumulant spin averages in (2.5) can
be obtained by differentiating the generating functide) = In Zy3(¢) over appropriate
components of the dimensionless molecular fgld

PA(E)
084, 084,..08,,
where Zy(&) = constantx §~(?/2-D1,, ,_4(¢) is the partition function of ab-component

classical spin and,(&) is the modified Bessel function. The two lowest-order cumulants
which will be needed below can be written explicitly as

Aotlotg..ot,, (é.) = (26)

£, = BO
(2.7)
B o , o
Aup () = % (&w - 23’3) B (S)Ziﬂ

where §y4 is the spin-component Kronecker symbdl(£) = dA(£)/dé is the Langevin
function for D-component spins anB’(¢) = dB(&)/ds. The expressions for the three- and
four-spin cumulants can be found in [35]. It should be stressed that the spin cumulants (2.7)
appearing in the diagrams generated originally by the expansion of (2.4) in powgjs of
(the unrenormalized diagrams) simplify, since there are only a few non-zero components of
the molecular field (for a domain wall in the chosen geomefyandé,). The complete

form of spin cumulants (2.7) is needed, however, for the constructi@e®h allowing for

the fluctuations of other components of the molecular field. For Ising systems the classical
spin diagram technique coincides with the ‘Ising part’ of the standam[36, 37] and can

be used with Brillouin function$3s of a general spirs. In the book [37] more technical
details concerning the construction €T for Ising systems can be found, which play the
same role in the present classisalt.
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The next step beyondiFa is the self-consistent Gaussian approximation taking into
accountpair correlations of the molecular field acting on a given spin from its neighbours,
which implies the Gaussian statistics of the molecular field fluctuations (see figure 1). Since
subsequently we are going to take the limiit— oo, only fluctuations of the molecular
field components withw = 3,..., D should be taken into account, because their total
contribution exceeds that of the fluctuations zofand y components by a factor of the
order of D. The diagram sequence represented in figure 1 is equivalent to a closed system
of nonlinear equations for the averaged magnetizationn) and the correlation function
S = (mgimg;) of the spin components with = 3,..., D. The diagrammatic equation
in figure 1) is the generalization of the Curie—Weiss equation (2.3) for the magnetization
(the angle brackets are dropped):

m; = AAE;, 1) /3&; = A, (&, lue, + Ay (&, Lui)ey (2.8)

where the (averaged) molecular fiedd is given by the expression (2.2) without the last
term andl,; is related to the dispersion of the molecular field fluctuations on the site

li = (Eousm 2| aﬂ Z lj SZO[ . (29)

The spin cumulant averages.. on a sitei (see figures 1) and ¢)) renormalized by
Gaussian fluctuations of the molecular field are given by

A.=A. +ZA walo + Z (1 aa,g+ )A“Wﬁﬂzal,ﬁ--- (2.10)

«o,f=3

where taking into account only the first term correspondsita. These series, describing
the influence of pair-correlated fluctuations of different components of the molecular field,
can be rewritten as

Ny D 32
]"[Z < agZ) A...(Ei)=exp[a2=:3lm-aé3}A...(§,~). (2.11)

a= 3nn_0

Such exponential differential operators were considered by Horwitz and Callen [38] for the
Ising model. Generalization of their results for the multi-component case yields a closed
formula
A 1 D—2  —r?
= 771(0—2)/2/(1 re” A.(() (2.12)

where(; is the spread molecular field given by

=¢ + Zle/zraea (2.13)

and the integration in (2.12) is performed with respect to the— 2)-component vector
variabler = {r,}.

The Dyson equation for the spin—spin correlation functisff entering (2.9) is
represented in figure &) and has the analytical form

S = Raajjy + RaojttaB ) Jjr Sy (2.14)

Applying this equation twice, one can simplify the expression for the quakytitip

1 Soza
lai e ~< - 1) (215)
ZAaai Aaoa
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The system ofscGa equations for a domain wall in a biaxial ferromagnet stated above
simplifies for a small anisotropy (£ n <« 1) and in the limitD — oo, which will be
pursued in the next section. Fgr = 0 the molecular field fluctuations measured by the
quantity /,; vanish according to (2.14) and (2.15), and the magnetization equation (2.8)
reduces to theiFa result (2.3).

3. The spherical limit

In the spherical limitD — oo the Langevin functionB(¢) (see equations (2.3) and (2.7))
simplifies to

B(§) = (3.1)

X
1++/14+x2
where the scaled variable (which should not be confused with the coordinatappearing
below) is given byx = 2&/D. Correspondingly, the spin cumulant averages (2.6) considered
as functions ofv can be estimated as

Avyaya, X D7F. (3.2)

With the help of this estimate it can be shown that in the liRit— oo SCGA becomes
exact, since all other more complicated diagrams die out, at least/a43b]. Indeed, a
unification of two oval blocks into a larger one, which leads to a more complicated diagram
(€.9. Aua - App = Aqqpp in figure 1), leads to the appearance of an additional fagtar, 1
since

Aoy tmin X Dararan = Dozt /D - (3.3)

In [35] some such higher-order diagrams were considered in the framework of/fhe 1
expansion for low-dimensional classical ferro- and antiferromagnets.

For the consideration of the limid — oo it is convenient to introduce the well behaved
dimensionless temperature variables 7/TM™, where TM™ = Jo/D and J, is the zero
component of the exchange interaction, as well as the fuftherdependent variables:

Gi=(D/OAwi i =lu/D  siv=DS. (3.4

Expression (2.15) can now be rewritten as

~ 1 Sii
I = -1 35
20G; (BG,- ) (3-5)

and the expression for the square of the spread value of the argunireii2.12) reads

26\2 (2 2 2 216 &
xf = = (g 2 rums ) + (55 2orum )+ dorE (3.6)
D X 0~ D ~

where A;; = J;;/Jo. It can be seen that the contributions of the fluctuations ofathe
components of the molecular field to (3.6) (each of them is small/@¥) lre essential

due to their large number. Now the Gaussian integrals (2.12) can be easily calculated (for
D > 1) by applying the identity

% / dx e*xzf(axz) = f(a/2) a1 3.7)
g
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successivelyD — 2 times. Thus, the integration leads simply to the replacemgrt %
in (3.6). Now for the quantityG; (equation (3.4)) with the use of the second equation
of (2.7) and the asymptotic expression (3.1) one gets

2 1
Gi=—— .
01+ V142

The magnetization equation (2.8) can be simplified by using the first of equation of (2.7)
and (3.1) to

(3.8)

m;; = Gl‘ Z)szj my; = 7]G, Z)\[jmyj . (39)
J J

Finally, determiningx? from (3.8) as a function o6;, equating it to (3.6) with:2 = % and
using (3.5) and (3.9), one arrives at the equation

si +m?=1 (3.10)

which is nothing but the kinematic identityn? = 1 in the limit D — oo. The
normalized correlation functian; determined by (3.4) satisfies the following linear equation
from (2.14),

siy = 0G8;ir + 1o G Z)»ijsji' (3.11)
J
with the variable coefficientG;. Equations (3.9)—(3.11) constitute the closed system of
equations, which can be applied to the calculation of the domain wall magnetization profile
in the spherical limit.
In the homogeneous case (or in one of the domains}= 0 andm, andG are constants.
In this case equation (3.11) can be easily solved with the help of the Fourier transformation,
which results in

dgq _ dg 1
Sii = Uo/ wsq =60GP(n,G) P(X)= Uo/ @n)p

—— 3.12
1— Xiyg (3.12)

whereuy is the unit cell volume and, = J,/Jo. In the long-wavelength limit, = 1—ag?,
wherea ~ ag and aq is the lattice spacing. The lattice integrBl X) has the following
properties:

1+ X?%/z X«1

3.13
W —co(1— X)Y? 1-X«1 (3.13)

P(X) = {
wherez coincides with the number of nearest neighbauxsfor the NN interactions andv
(the Watson integral) andy = vo/(47a®?) are lattice-dependent constants. For a simple
cubic (s0) lattice vo = a3 anda = a3/6, henceco = (2/7)(3/2)*2. Since the sum in
the right-hand part of the first equation of (3.9) equals this equation is satisfied only if
m, = 0 (aboveT;) or G = 1 (belowT¢). In these cases from equation (3.10) one gets the
temperature-dependent magnetizatioss m,:

m=(1—0/0,)Y? 6 <6.=1/P(ny). (3.14)

It can be seen that in the fully isotropic case=£ n, = 1) the value of the phase transition
temperature in the bulk. = 1/P(n,) reduces to the well known result = 1/ W [1].

The width of a Bloch wallsg in a uniaxial ferromagnet is determined by the balance
between the anisotropy and inhomogeneous exchange energies. For small anisotropy
(1 — n <« 1) the conditionsg > ag is fulfilled. In this case the change of the domain
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wall magnetization at a distance @f is small, and for systems with the nearest-neighbour
interactions one can rewrite the lattice sum in (3.9) about some paint; as

Z rijm; = m(r) + aAm(r) (3.15)

J
where the second term with the Laplace operatois small in comparison to the first
one. The quantityG; in (3.9) determined by (3.4) is in the small-anisotropy case also a
continuous function of the coordinate with the sc&léMloreover, as can be seen from (3.9)
and (3.15), the deviation af from its bulk value 1 is small, i.e.

G(r) =14 Gi(r) G111 (3.16)
Now one can rewrite the equations (3.9) in terms of the normalized magnetizatien

m/me, Whereme is the equilibrium bulk magnetization given by (3.14). The result in the
chosen geometry is of the form

an’(x) = —G1(x)n (x)
any(x) = —G1(x)ny(x) + (L — nny(x).

The kinematic equation (3.10) can be represented in terms as
e(l—n? =0cs:i/0 — 1 €=0./0 —1. (3.18)

Unlike the magnetization equation (3.9), the equation for the correlation function (3.11)
cannot, in general, be written in a continuous form of the type (3.17). In the general case
we are going to consider, wherg is not necessarily close to 1, the correlation length of
the @ spin components belov,

gCOt =V 0”701/(1 - 7701) (319)

(not to be confused with components of the normalized molecular §gldvhich can be
determined froms, in (3.12), can be comparable with the lattice spacigg Moreover,
even in the case 1 5, <« 1 the continuous approximation feg, does not yield the correct
bulk result (3.12) which is formed by integration over the whole Brillouin zone and not
only over the long-wavelength regian <« 1. But it can, nevertheless, be applied for the
calculation of the wall properties, as we shall see below.

(3.17)

4. Domain wall magnetization profile

Before proceeding to the solution of equations (3.17), (3.18) and (3.11) in the general
situation, let us first consider the cagg= 0, where the spin fluctuations play no role and
the situation is described exactly mFa. Here the solution of (3.11) yields; = 6G;, and

with the help of (3.18) one getS;(x) = €[1 — n?(x)]. Adopting it in (3.17) and solving

the resulting equations, one arrives at the magnetization profile [21, 23]

n, = tanh(x/9) ny = p/ cosh(x/8) (4.2)
where
p_{fhw r=2(1—p)je<1 8_{%=¢@u—m r<1
0 =1 8L=\/m=851'1/2 Tt>1.
4.2)

It can be seen that the crossover from the Blgeh=(1) to the linear f = 0) wall proceeds
with increasing temperature through the elliptic one havifig-n2/p? = 1 with 0 < p < 1,
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and the transverse component of the magnetization in the wglldisappears through a
second-order phase transition. The temperature obthghase transition can be written
in three forms:

=1 eg=21—-n<«kl 95:1/(14—63);1—65 (43)

the quantityr playing the same role for aw as the ‘absolute’ temperature for the
bulk (cf equation (3.14)). The temperature-dependent faetor (4.1) can be interpreted
as thepw order parametempg [31, 32]. Whereas the Bloch-wall wid#y is temperature-
independent, the width of the linear wéll is determined by the balance of the homogeneous
and inhomogeneous exchange energies and is divergimg. aConsidering the first of
equations (4.1) fox > §., one can identify

1—tanhx/8.) = exp(—x /&) = 8L = 2&, (4.4)

where &, is the correlation length of the spin components. One should also note the
analogy between the Bloch-wall wididg (4.2) and the transverse correlation length
(3.19), which coincide for a purely uniaxiah{ = n) model with small anisotropy. The
function G; entering the equations (3.17) can be written as

el—pd) 2 1

Gl = coslt (x/8) - 82 cosi (x/8)

(4.5)
Sincea ~ a3, in the small-anisotropy casé; ~ (ao/8)? < 1 in the whole temperature
interval.

Now we proceed to the solution of the magnetic interface problem described by the
equations (3.17), (3.18) and (3.11) in the general egsg 0. The solution of the Dyson
equation for the correlation function (3.11) depends on the relation between the correlation
length &g, (3.19) and the other length scaleg,ands. If &, > ao, which is satisfied for
1 -5, « 1, the continuous approximation to equation (3.11) can be applieg, K §

(i.e. 1—n, > 1—n, see (4.2)), the correlation functief} can be easily calculatddcally

with respect to the slowly changing magnetization profile (or, more exactly, the profile of
G) in the wall. For uniaxial ferromagnets with a small anisotropy-(3 <« 1) considered
throughout this paper these limiting cases overlap in the regiemk 1 —n, < 1. Let

us consider first the cadg, <« §. Here one can make a replaceméht= G, in (3.11),

after which this equation can be solved as in the homogeneous case. With the use of (3.12)
and (3.16) one gets

5iit = 0G; P(neGi) = 0P (o)1 + 1 (1) G1(x)] (4.6)
where
1+ 2n%/z e K1
O(P, o ~ ¢
) = 14 P 0 1 4.7)
P(na) —_— 1-1n, <1
2P(T}a) v 1- Na

andcg is determined by (3.13). Now with the use of (4.6) and (3.18) one can express
through the magnetization profilgx):

G1(x) = €[1 — n®*()]I (o) - (4.8)

This expression differs only by a constant from that used in the beginning of this section in
the MFA limit n, = 0. Solving now the magnetization equations (3.17) as above, one gets
the samebw magnetization profile (4.1), where the parametemnd$ are given by (4.2)
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with the renormalizedw temperaturer = T = t1(n,). The critical values of the three
temperature variables (cf equation (4.3)) now read

w=1"t0) <1  e@=20-mIn) 0 ="0/(1+ep) (4.9)
whered. is given by (3.14). One can see from (4.9) and (4.7) that fer 4, <« 1 the
effective transition temperaturgy becomes small. On the other hand, due to the validity
condition 1- 5, > 1—n the absolute temperatufg of the bw phase transition remains in
the limiting case under consideration clos@ideg <« 1). It can be seen that in this case the
domain wall does not demonstrate any two-dimensional behaviour, and its phase transition
at 6 < 6. can still be described qualitatively by the effective diminishing of the ordering
interaction for the wall spins forced perpendicularly to the easy axes was said in the
introduction. The effect in the case where-}, « 1 is much larger than according to the
MFA estimates because of the divergence of the fundtignp) (equation (4.7)). Accordingly,
the width of the linear wall can considerably exceed its mean-field value (4.2):

_ 2y~ [ 1
5“\/?’ ) =\ P () (1= o) 1/8 (4-10)

in the case where 1 5, « 1. Sinced, is related to the longitudinal correlation length (see
equation (4.4)), this result shows a non-trivial influence of fluctuations of transverse spin
components on the longitudinal spin correlations in the anisotropic spherical model. One
can also check that the functi@m (x) (equation (4.8)) is still given by the expression (4.5)
with the changed value of thew width §.

In the other limiting casesq, > ag, a continuous approximation of the type (3.15) can
be applied to the Dyson equation (3.11). Making the Fourier transformation with respect to
the coordinatey andz and using the conditions1 n, <« 1 and (3.16) one arrives at the
differential equation for the correlation function

as”(x) —[1 — 0o + ag® — G1(x)]s(x) = —08(x — x') (4.12)

whereg? = q§+q3 and the ‘mute’ argument’ of s was dropped. This equation should be
solved to yields with x = x’ as a function or functional o1, ands;; (cf equation (4.6))
should be obtained by the integration ofover ¢, andg,. Then, as above¢G; should

be found from (3.18) and used in the magnetization equations (3.17). All this seems to
be too complicated since equation (4.11) cannot be solved analytically for the arbitrary
function G1(x). But the expected result that tibev transition temperaturés turns to zero

in the purely uniaxial case, = n signals that there should be an exact solution to the
problem. We can try to find it assuming th@g(x) has the same functional form as above,
equation (4.5), with some renormalized value of thve width § as a parameter. Then using

a new variable: = tanh(x/§), equation (4.11) can be rewritten as

d d 2 86 82
Sa-ud (22— s = =Tsw—u)  wP=S Q-+ agd)
du du 1—u? o o
(4.12)
and solved in terms of the adjoined Legendre functions
+u/2
" _utnp 14+u
P = fa g <1—u> (449

which leads to

08 1—tanh(x/8) tanh(x’/$8 —x
s(x,x',q) = m exp(—%|x—x/|) [1+ r(;/z 1 1 h'/8) <1+,utanh|x§x|>:| .

(4.14)
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This (not translationally invariant) expression can be reduced in thexcase’ with the
help of (4.5) to the form
0 G
|:1+ 1(x) ] ]
2012v/1 — 1 + ag® 2[1—ne — (1= 1)/8% + aq?]
wheres = §/8g (see equation (4.2)). Since the structure of this expression is analogous to
that of (4.6), it is now clear that the choice 6% in the form (4.5) was right. Integrating

(4.15) over the two-dimensional wavevecipto gets;; and proceeding as above, one gets
functionally the same results (4.1), (4.2) with a new renormalizedemperature

T =11, 1,95) (4.16)

s(x,x,q) = (4.15)

where

co 8 n SV1—ne++/1—79
APe) VI=10 dJ/1—ne—+v1I—17n
The latter simplifies in the limit + 5, > 1 — n to the second limiting expression in (4.7).
It can be seen from (4.15) that in the case under consideratieny, 1< 1, the integral
(4.17) is determined by the long-wavelength region, which justifies using the continuous
approximation for the transverse correlation functiorin the region of elliptic wallsf < 1)
one hass = g and hence in (4.17) = 1. The critical values of both thew-temperature

t and the absolute temperatu#e(4.9) determined now by (n,, 7, 1) go to zero in the
uniaxial limit:

I(Ua, n, S) =

(4.17)

78 & O 1/In Ne = 1 (4.18)

N —1Na
which corresponds to the two-dimensional nature of the domain walls. One can see that the
two-dimensional effects lead to a further decrease oftivephase transition temperature:
=117 1) < ¥ = I"(n,), wherel (n,) is given by (4.7).
In the linear-wall region{ > 1) the normalized wall widtts is given by the solution

of the transcendental equatiéh= 71 (1., 1, §) following from (4.2) and (4.16). The latter
can be rewritten in the natural units in the form

5. = ﬂ 9 In S+ Ecu (4.19)

2¢ P(Na) 6L — e

whereé, is the transverse correlation length given by (3.19). Far frgnwheres, > &g,
the solution of (4.19) leads to the formula (4.10). This asymptotic dependence can be also

represented in the ford= /71 (14) = v7/7”, which is the analogue of the Curie—~Weiss
asymptote for the bulk susceptibility(7) of a ferromagnet far abov&.. In the purely
isotropic modely), = n, the linearbw structure is realized in the whole temperature range.
The bw width §. determined by the solution of (4.19) shows a crossover to the Bloch-wall
width 8g at low temperatures:

S =g [1+2exp(— 126—;7Pc(;7))] €=6:/0—-1>.1—1. (4.20)

It is worth noting that in this limiting case the longitudinal correlation length,= 8. /2,
is determined by the transverse ogg, = 3g.
The temperature dependencies of tve order parametemg = p and the normalized
Dw width § are represented in figure 2 for different valuespgfand 1— n = 10°3. One
can see that for & 7, = 1072 the fluctuational decrease of tiev transition temperature
is essential, although two-dimensional effects are still negligible in this case. In contrast,
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Figure 2. Temperature dependencies of the domain wall order paramegtet p and thepw
width § for different values of the second anisotropy parameter

for 1 —n, = 1.2 x 10°3 they come into play, the corresponding additional diminishing of
the transition temperature becomes essential, and the temperature dependeitehaf
logarithmic scale is no longer a straight line.

5. Discussion

In the main part of this paper the structure of domain walls in the biaxial ferromagnetic
model described by the classical-vector Hamiltonian (2.1) was calculated exactly in the
whole temperature rang€ < T in the spherical limitD — oco. The main qualitative
result is that in the purely uniaxial mode},(= n) the Bloch walls do not exist at any non-
zero temperature (see equation (4.18)) being disordered by thermal fluctuations to the linear
(Ising-like) ones. This result complements the well known fact that the Bloch walls in the
purely uniaxial model (considered within the phenomenological micromagnetic approach
which is equivalent tavFA) cannot move since their maximal velocity (the Walker velocity)
is equal to zero. In the opposite limit, = 0, the model withD — oo total spin
components and a finite number (here two)nt€ractingones is realized. In this case spin
fluctuations die out andéiFa becomes exact. The temperature of the phase transition from
Bloch to linear walls